
Oh my web
Connecting to devices with your browser

@rondagdag

Ron Dagdag



● Web Developers?

● UX Designers?

● VR Developers?

● IoT Engineers?

Audience Survey



Hackster Portfolio

Ron Dagdag @rondagdag



My Story



The Web Eats Everything in its Path

-Graphics

-Animation

-Location

-Motion Input

-Real-Time 3D

-Mixed Reality

-Camera

-Messaging

-Real-Time Messaging

-IoT/Wearables

-Robotics



Monitoring

Control

IoT use cases



- Not everything needs to be connected to the 

Internet all the time.

- Only connect when it’s needed

- by allowing sandboxed code to request limited 

access to a device

Web MIDI, Web Bluetooth, Web USB, Web NFC



chrome://flags/#enable-experimental-web-platform-features



MIDI 

- Musical Instrument Digital Interface

- 1981 by founder of Roland, Ikutaro Kakehashi

- Industry standard music technology protocol 

- connects products like

digital musical instruments,

computers, tablets, and smartphones

What is MIDI?



1. Request access

2. Scan for Relevant Device

3. Add Event Listener

4. Decode the message

How to use the WebMIDI API?



MIDI



1. Request access
let midiAccess = await navigator.requestMIDIAccess();

1. Scan for Relevant Device

const inputs = midiAccess.inputs.values();

How to use the WebMIDI API?



3. Add Event Listener

input.addEventListener("midimessage", 

MIDIMessageEventHandler);

4. Decode the message

const cmd = event.data[0] >> 4; //on or off

const pitch = event.data[1];

const velocity = event.data.length > 2 ? event.data[2] : 1; 

// if velocity == 0, fall thru: it's a note-off.

How to use the WebMIDI API?



Littlebits MIDI?



https://caniuse.com/#feat=midi

Web MIDI

https://caniuse.com/#feat=midi

https://caniuse.com/#feat=midi
https://caniuse.com/#feat=midi


∗ Standard (specification)

∗ wireless communication standard 

∗ allows electronic devices to connect and 

interact with each other

∗ short distances less than about 10m or 30ft

∗ Bluetooth 5 - maximum of around 800 feet

What is Bluetooth?



In the beginning

∗ Ericsson 1994

∗ Replacement for RS-232

∗ Original name:

∗ Short link radio technology

∗ 1999 got the name Bluetooth

∗ Bluetooth Special Interest Group

∗ More than 20k members



10 million
Bluetooth enabled devices shipping EVERY DAY

Source: ABI Research, via Martin Woolley

https://www.youtube.com/watch?v=-xtbTdOMqcg


Fun Fact...

Norse runes for Harald Bluetooth, 10th century King of Denmark



Classic v.s. BLE (smart) 

3.0 Classic

∗ Connection session (connected all the time

∗ Connection time higher

∗ Voice capable

∗ Pairing

4.0 Low Energy

∗ On/Off

∗ Fast connection (3ms)

∗ No voice (some unidirectional for hearing 

aids)

∗ Beacons

∗ 32 bytes



Generic Attribute Profile (GATT)

∗ Generic Attribute Profile

∗ Peripheral (Server)

∗ Central (Client)

∗ Read

∗ Write

∗ Notify

∗ Indicate (Ack)



GATT Services

∗ Alert Notification Service
∗ Automation IO
∗ Battery Service
∗ Blood Pressure
∗ Body Composition
∗ Bond Management
∗ Continuous Glucose Monitoring
∗ Current Time Service
∗ Cycling Power
∗ Cycling Speed and Cadence
∗ Device Information

∗ Environmental Sensing
∗ Generic Access
∗ Generic Attribute
∗ Glucose
∗ Health Thermometer
∗ Heart Rate
∗ HTTP Proxy
∗ Human Interface Device
∗ Immediate Alert
∗ Indoor Positioning
∗ Internet Protocol Support

https://www.bluetooth.com/specifications/gatt/services

https://www.bluetooth.com/specifications/gatt/services


GATT Services

∗ Location and Navigation
∗ Next DST Change Service
∗ Object Transfer
∗ Phone Alert Status Service
∗ Pulse Oximeter
∗ Reference Time Update Service
∗ Running Speed and Cadence
∗ Transport Discovery
∗ Tx Power
∗ User Data
∗ Weight Scale

https://play.google.com/store/apps/details?id=no.nordicsemi.android.nrftoolbox

https://play.google.com/store/apps/details?id=no.nordicsemi.android.nrftoolbox


∗ Control BLE devices directly from the web

∗ HTTPS only

∗ Security-First, User Interaction + Approval required

∗ ES6 Promise-based API

Web Bluetooth



∗ Available through navigator.bluetooth

∗ Can only be invoked through user interaction (e.g. button 

click)

∗ We need to specify filters – specific services/ device names 

we are interested in

The Web Bluetooth API



1. Device has to be paired first before chromium can 

connect

2. Scan for a relevant Device

3. Connect to it

4. Get the Service you are interested in

5. Get the Characteristics you are interested in

6. Read / Write / Subscribe to the Characteristics

How to use the WebBluetooth API?



Micro:bit



targetDevice = await 

navigator.bluetooth.requestDevice({

// filters: [...] <- Prefer filters to 

save energy & show relevant devices.

filters: [{ services: [LED_SERVICE] }, 

{ namePrefix: "BBC micro:bit" }]

});...

∗ Asks the user to choose a device from a list

∗ Returns a promise for the selected Device object

Step 1 – Find a matching Device



.then(device => device.gatt.connect())

∗ Returns a promise for the GATT Server object, which you 

can query for Services

Step 2 – Connect to the Device



.then(server => {

// Get Service...

return server.getPrimaryService(serviceUUID);

})

∗ Returns a promise for the Service object

Step 3 – Get the Service



.then(service => { // Get Characteristic...

return service.getCharacteristic(characteristicUUID);

})

∗ Returns a promise for the Characteristic 

object

Step 4 – Get the Characteristic

Property Enabled

Broadcast

Read ✅

Write without response

Write ✅

Notify

Indicate



.then(characteristic => {

return characteristic.readValue();

})

.then(value => {

console.log('Value is ' + value.getUint8(0));

})

.catch(error => { console.log(error); });

∗ Returns a promise for DataView, which gives access to 

individual bytes

Step 5 – Read



const data = new Uint8Array([0x55, 0x70])

characteristic.writeValue(data)

∗ Returns a promise which will be resolved after the value has been 

written

Step 5 – Write



chrome://bluetooth-internals

Chrome Debugging Tools



Web Bluetooth



➔ Universal Serial Bus

➔ standard type of connection for many different kinds of 

devices

➔ protocol for connecting peripherals to a computer

➔ de-facto standard for wired peripherals

➔ 1994 - co-invented by Ajay Bhatt of Intel and the USB-IF 
(USB Implementers Forum, Inc)

What is USB?



1. USB 4.0: 

∗ transfer data at 40 Gbps.

2. USB 3.1: Called Superspeed+

∗ transfer data at 10 Gbps (10,240 Mbps).

3. USB 3.0: Called SuperSpeed USB, 

∗ maximum transmission rate of 5 Gbps (5,120 Mbps).

4. USB 2.0: Called High-Speed USB, 

∗ maximum transmission rate of 480 Mbps.

5. USB 1.1: Called Full Speed USB, 

∗ maximum transmission rate of 12 Mbps.

USB Versions



Types of USB 



USB Logo 



1. You have to understand how the USB standard works in 

order to be able to use this API.

2. uses Cross-Origin Resource Sharing (CORS)

How to use the WebUSB API?



1. Request devices

2. Connect

3. Select configuration

4. Claim interface

5. Control transfer

6. Transfer

How to use the WebUSB API?



Micro:bit



1.Request devices
let devices = await navigator.usb.getDevices();

2.Connect

const filters = [

{ vendorId: 0x2341, productId: 0x8036 } 

//Arduino Leonardo

];

let device = await navigator.usb.requestDevice({ 

filters: filters });

How to use the WebUSB API?



3.Select configuration

await this.device_.open(); // Begin a session.

await this.device_.selectConfiguration(1); 

// Select configuration #1 for the device.

4.Claim interface

await this.device_.claimInterface(2); 

// Request exclusive control over interface #2.

How to use the WebUSB API?



5.Control transfer

await this.device_.controlTransferOut({

requestType: "class",

recipient: "interface",

request: 0x22,

value: 0x01,

index: 0x02

}); // Ready to receive data

How to use the WebUSB API?



6.Transfer

let readLoop = async () => {

try {

let result = await 

this.device_.transferIn(5, 64);

this.onReceive(result.data);

readLoop();

} catch (error) {

this.onReceiveError(error);

}

};

How to use the WebUSB API?



1. chrome://device-log

2. chrome://usb-internals

Chrome Debugging Tools



micro:bit over USB

https://github.com/bsiever/microbit-webusb

https://bsiever.github.io/microbit-webusb/

WebUSB Codelab

https://codelabs.developers.google.com/codelabs/web-serial

Resources

https://github.com/bsiever/microbit-webusb
https://bsiever.github.io/microbit-webusb/
https://codelabs.developers.google.com/codelabs/web-serial


Web USB



➔ Web HID - provides access to HID input/output devices

higher level of abstraction than the WebUSB and Web Bluetooth APIs

➔ Web NFC – ability to read and write to NFC tags

only works on android phone via chrome
limited to NFC Data Exchange Format (NDEF)

Other



➔ Web MIDI - easiest to learn and pick up, MIDI message 

format

➔ Web Bluetooth – device has to be paired first, learn 

GATT

➔ Web USB – understand how the USB standard works 

first

Summary



About Me
Ron Dagdag

Director of Software Engineering at Spacee

6th year Microsoft MVP awardee​

Personal Projects
www.dagdag.net

@rondagdag

www.linkedin.com/in/rondagdag/

Feedback is appreciated​
https://linktr.ee/rondagdag

@rondagdag


